Standards for the FREMO modular system
Contents

1 Preface and Introduction ... 3
2 Notes on this version .. 3
3 Module structure .. 3
 3.1 Geometry of module structure ... 3
 3.2 End profile .. 4
 3.3 Height of rail top .. 4
 3.4 Module connection ... 4
 3.5 Color of side panels ... 5
4 Track.. 5
 4.1 Allowed track material ... 5
 4.2 Minimum radius .. 5
 4.3 Clearances and track axis distances ... 5
 4.4 Uncoupling magnets .. 5
 4.5 Throw mechanisms and controls ... 6
5 Rolling stock .. 6
 5.1 Wheelsets .. 6
 5.2 Couplers .. 6
 5.3 Car weight ... 6
 5.4 Motive power ... 6
 5.5 Weathering .. 6
6 Landscape.. 6
 6.1 Season, era and modeled region .. 6
 6.2 Grass fiber / landscaping material ... 7
 6.3 Color of track and ballast ... 7
 6.4 Telephone poles ... 7
7 Electrical equipment ... 8
 7.1 Electrical connection to track work ... 8
 7.2 Electrical connection between modules ... 8
 7.3 DCC booster ... 8
 7.4 LocoNet .. 8
8 Car cards ... 8
9 Datasheet & waybills .. 9
 9.1 General ... 9
 9.2 9.2 Datasheet and car cards ... 9
 9.3 Car card boxes at stations .. 11
10 Recommended materials .. 11
11 Links... 11
12 Contact .. 11
1 Preface and Introduction
americaN is a module standard adopted by the FREMO (Friendscircle of European Modelrailroaders). Modules build to this standard resemble single-track standard gauge railroad lines in North America in N-scale (1:160). There are no restrictions on either area or era.

This document contains standards as well as recommended practices for building and detailing americaN modules. There are also standards for materials necessary for prototype-oriented operations, for example car cards and waybills. Important aspects of the “Track Warrant Control” operations (which is our preferred method) are described in a separate short reference. This document can be loaded from the homepage of americaN.

The americaN module system was developed in 2001 because the initiators felt that the already existing module systems, NTRAK and oneTRAK no longer reflected the current philosophy of modular model railroading. In the americaN system the use of a prototypical traffic control system, as well as simulation of traffic flow with car cards and waybills, is very important. This overall concept already existed with FREMO module systems. For the americaN standard, many ideas were taken from FREMO H0(USA) and fremo-N. One other important aspect of americaN is the use of commercial track and turnouts.

The main characteristics of americaN are:
- free module geometry,
- height of rail top above ground 1300 mm,
- use of NMRA-DCC and LocoNet,
- prototype-oriented operations (Track Warrant Control)
- use of car cards and waybills.

2 Notes on this version
This is the first release of the americaN standard in the English language. It is a translation of the 2007-11-01 German standard. Modules built to preceding standards are allowed to be used, even if they do not currently follow the norm in all details.

Changes in this version are:
- additional remarks on end profiles
- definition of a standard for electrostatic grass and landscape
- revision of waybills, now with day of week indication

3 Module structure
3.1 Geometry of module structure
Length, width and angle of a module can be freely chosen, as long as the minimum radius of 1000mm on the main track is maintained. With respect to transportability, the length of a single segment should be kept below 1200 mm.
3.2 End profile

The underlined items are identical to the dimensions of the FREMO end profile N90, so mechanical compatibility to other FREMO systems in N scale is maintained. The values in brackets refer to wide-spread, commercially available products.

NOTE: The 8-mm holes are NOT vertically centered! It is suggested to drill these holes only after track has been laid. A self-made cardboard template may be very useful.

3.3 Height of rail top

The rail top is at a height of 1300 mm above floor. The module legs must have the possibility to adjust height for +/-20 mm. Modules with a length of 500 mm and longer must be able to stand by themselves.

3.4 Module connection

The modules are mechanically connected with nuts, bolts (both M6 or 1/4") and appropriate washers. It must be possible to tighten the screws and nuts without tools, so its mandatory to use either wing screws, thumb screws or eye bolts and wing nuts. Rail joiners or connecting tracks are not used. The rails end flush or with a set back up to 0,2 mm at a RIGHT ANGLE to the end plate. For improved mechanical stability the rails must be soldered to brass screws or PCB ties at the end of the module. It is important to check the gauge after completion! The railheads are to be chamfered at the module ends (see image 2).

Rails must not run over the complete length of a module. For humidity compensation, a cut through both rails in the middle of the module is mandatory.
3.5 Color of side panels
The side panels must be painted in a semi-gloss, beige color RAL 1001 Beige or equivalent.

4 Track

4.1 Allowed track material
The maximum allowed height of the visible rail is 1.4 mm, which is Code 55. At the moment there are two optically satisfying products resembling North American trackwork:
- Atlas Code 55
- Micro Engineering Code 55
The Micro Engineering Code 55 flex track has the advantage that MT wheelsets with high flanges can run on it without hopping. Thus, for modules without turnouts this track is the best we can recommend. All other trackwork should be made of Atlas Code 55 flex track and #7 turnouts or greater. Atlas turnouts are “DCC-friendly” without modifications. The frog of the #5 Atlas turnout is problematic, and requires work in order to be conform to NMRA standard S-3.2 (Trackwork, Standard Scales).
Peco Streamline Code 55 track and turnouts can also be used. Turnouts must be modified that the frog has its own current supply and is not supplied through the points exclusively. Custom-made trackwork is also acceptable if it conforms to NMRA standard S-3.2. For compatibility with MT wheelsets, flange clearance H must be at least 0.8 mm.

4.2 Minimum radius
Main track curves must be built with a minimum radius of 1000 mm.

4.3 Clearances and track axis distances
Clearances must be conform to NMRA standard S-7, and S-8 (using Class 1a rolling stock).

4.4 Uncoupling magnets
Uncoupling magnets are not allowed due to the possibility of unintended train separation. For Uncoupling, the Rix Pick N scale uncoupling tool or a similar device is used.
4.5 **Throw mechanisms and controls**
A location must be easily operable for crews unfamiliar with the “territory.” Thus, turnout controls (mechanical or electrical) should be close to the turnout. Switching locations in curves, as well as junctions, must be operable from both sides of the module. Mechanical systems are especially well suited for this.
Being able to operate from both sides of the module is very helpful in planning for successful arrangement of modules.

5 **Rolling stock**

5.1 **Wheelsets**
The wheelsets must be able to roll over Atlas Code 55 turnouts and flex track without touching the rail spikes.

5.2 **Couplers**
MicroTrains or compatible couplers which can easily be opened with the Rix Picks are mandatory. Kato or older Accumate couplers do not work properly!
As uncoupling magnets are not allowed, it is not necessary to adjust the trip pins. In unit train cars (passenger or freight) the couplers can be chosen freely. It is recommended practice to mount the couplers on the car body instead of on the trucks, as it provides smoother operation.

5.3 **Car weight**
Car weight must follow NMRA Recommended Practice RP-20.1: Initial weight 1/2 oz. + 0.15 oz/inch of car body length. This equals 14g initial weight plus 1.7g per cm car body length.

5.4 **Motive power**
As **americaN** layouts are operated with NMRA-DCC, all motive power must be suited with an appropriate decoder. The speed curve must be adjusted in a way that maximum speed with cars on level track is approximately 60 mph (with reference to 14V track voltage, see 7.3). The half-way throttle position should be represented with about half of maximum speed. Acceleration and deceleration delay are to be switched off (CV3 and CV4), unless they can be toggled with FRED throttle control and are noted on the loco data sheet. If the decoder provides automatic change between analog and digital mode, that function must also be deactivated.

5.5 **Weathering**
Weathering is deemed a very important factor for giving a realistic flair on a model railroad. Therefore all rolling stock should show some weathering. Different grades of weathering are prototypical and thus welcome.

6 **Landscape**

6.1 **Season, era and modeled region**
The modeled season is summer. Neither a specific region nor era is specified, but if enough rolling stock is available for a specific era, meetings will take advantage.
6.2 Grass fiber / landscaping material
For the US Convention 2007 in Rodgau, Germany, the better part of the finished modules got a major rework with electrostatically applied grass fibers. The base mixture consists of one part Heki Sommerwiese 3360, one part Heki Wildgras 3367, and one part Heki Winterboden 3363. This type of landscaping is to be preferred on reworks and newly built modules.

As not everyone has access to an electrostatic applying tool there are other base mixtures of flockage allowed:
- for arid zones: two parts Woodland Scenics T50 earth blend, two parts T43 yellow grass, one part T44 burnt grass;
- for humid zones: two parts T44 burnt grass, one part T45 green grass, two parts T50 earth blend.

6.3 Color of track and ballast
The main line (rail and ties) must be of dark grey color (we recommend Tamiya XF-63 German Grey). Ballast must be of middle grey color (we recommend ASOA Diabas N scale nr. 1409).

All other track work should resemble track maintained to a lesser degree than the main line. Rail and ties should be colored in brown. Colors called “rust” are normally way too red and therefore are not to be used!

6.4 Telephone poles
Poles are a simple way for giving some 3D appearance to rather flat modules. Thus, pole lines are to be installed (we recommend Atlas #2801). The poles must be painted grey, the insulators white or green. If the module has a distinct “viewing side,” the poles should be located behind the track. The number of poles \(n \) is calculated as follows: \(n = \text{length-of-module} / 25 \text{ cm} \) (round to closest number). The distance \(a \) from the module end to the first pole therefore is \(a = \text{length-of-module}/(2n) \). Distance between poles is 2a.
7 Electrical equipment

7.1 Electrical connection to track work
Because of the high specific resistance of rail, the track current must primarily pass through a feeder line, or track bus, parallel to the tracks and be fed into the rail in more than one location. The cross section of the track bus must be at least 0.75 mm^2 or 18 AWG in order to minimize voltage drop. The short, feeder connections from the track bus to the rails can be made with reasonably thin wire, such as the individual wires from phone or computer network cables. Each rail profile piece must have its own connection to the track bus, as rail joiners tend to oxidize with time.

7.2 Electrical connection between modules
As there are no rail joiners between modules, current must be passed from module to module using cables. The connection is made with 4 mm banana plugs. The right rail (in running direction toward the end of the module) must use a male connector, the left-hand rail a female. This ensures correct connection. The cables must be at least 30 cm or 1ft long (from the module ends), in order to ensure easy connecting. Stackable 4mm plugs must be used for connection with boosters anywhere on the layout.

7.3 DCC booster
Bigger yards and stations must have their own LocoNet-compatible booster. Track voltage must be set between 13 and 15 Volts.

7.4 LocoNet
The LocoNet network is separately made from LocoNet boxes and compliant cables, so there is no need to provide LocoNet connections in the modules.

8 Car cards
Every freight car used in an operating session must have its own car card, providing the following information:
- name of railroad
- car number
- car type
- AAR type

It is recommended to include an indication in what direction the empty car should be returned (east or west). For easy identification it would be nice to have a picture of the car on the front of the card.
Groups of cars which travel as units and are not separated during a session can have a single card for the whole group (coal or cement unit trains, for example).
Dimension of car cards: height 100 to 105 mm, width 54 to 60 mm and pocket depth 38 to 40 mm.
It is recommended to print the car card on index board, for example Brunnen Karteikarten unliniert, Art.-Nr. 10-22 400 10. Templates in MS Excel format are available on the americaN homepage. On image 3 you can see three different car cards: at left an older americaN carcard,
in the middle the actual MS Excel version (still without picture of the car) and to the right a commercially available card from Micro-Mark.

Image 3

9 Datasheet & waybills

9.1 General
Each location that generates or receives freight must have a datasheet. This must be provided at meetings. Additionally, the owner of the location must provide the necessary waybills. These waybills don’t have to be made for each meeting, but can be used again.

9.2 9.2 Datasheet and car cards
Our datasheet is based on a Bahnhofsdatenblatt that was introduced in the FREMO-Hp1-magazine 2/2004 by Knut Habicht and Bernd Schmedes. The major difference is the listing of all in- and outbound freights for all spots per operation day. Design and content should be illustrated on the basis of the extract of the data sheet for Appaloosa Junction in image 4.

On top left is a schematic track plan with named tracks. To the right is the approximate length of the sidings. The most important part is the chart. The “Track” column is the same identifier as in the track plan. If a track has more than one spot, these spots are listed separately in the column “Spot.” According to the available track length, there is one row for one car length at a specific spot. For example the team track has four rows because of its length for four cars. The ramp at the team track is mentioned in a separate row.

The freights are treated similarly, one row for every type of freight. If there are more different types of freights than track capacity, the track capacity is mentioned additionally in the column “Spot.” For example, the ramp at Cascades Cookies has only a capacity of two cars but four different types of loads.
In the “In” row, the inbound goods are listed; in the “AAR type” row, the necessary car type; and in the “Out” row, the outbound goods are described.

The following seven double rows are the weekdays. Here the owner registers at which weekday what good has to be delivered or collected to or from what spot.

On the basis of the datasheet, the owner of the location makes his set of waybills. Waybills or empty car orders must show the weekday. (See new MS Excel Sheet on the americaN homepage).

With the datasheet and the waybills it is now quite easy to build up the trains in the staging yards. The “yard master” takes all waybills and combined empty car orders/waybills to the appropriate staging yard, from where a specific spot is reached. Now he just has to look for a car with its car-card, and inserts the waybill or empty car order in the car-card’s pocket.

<table>
<thead>
<tr>
<th>Track</th>
<th>Spot (opposite)</th>
<th>AAR type</th>
<th>Mb</th>
<th>Tu</th>
<th>We</th>
<th>Th</th>
<th>Fr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmers Coop</td>
<td>Door 1</td>
<td>HM</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>Door 2</td>
<td>MY</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Team Track</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ramp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cascades Cookies</td>
<td>Ramp (2 spots)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Packing material</td>
<td>MY</td>
<td>in</td>
<td>out</td>
<td>out</td>
<td>out</td>
<td>out</td>
</tr>
<tr>
<td></td>
<td>FE</td>
<td>TY</td>
<td>out</td>
<td>in</td>
<td>in</td>
<td>out</td>
<td>out</td>
</tr>
<tr>
<td></td>
<td>Backing add. (Some)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Edible far</td>
<td>FS, PP, MTY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sugar</td>
<td>LS, MTY</td>
<td>in</td>
<td>out</td>
<td>in</td>
<td>out</td>
<td>in</td>
</tr>
<tr>
<td>Barrows Fuel & Oil</td>
<td>Coaldock</td>
<td>HH, MTY</td>
<td>in</td>
<td>hold</td>
<td>hold</td>
<td>out</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>Unloading pipe (Tax)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gas</td>
<td>TA, MTY</td>
<td>n</td>
<td>out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>TA, MTY</td>
<td>n</td>
<td>out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shed</td>
<td>NM, MTY</td>
<td>n</td>
<td>out</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The “in” and “out” columns for the team track and the interchange track were intentionally not filled out. To have a possibility to vary the operation sessions in some degree, it is the yard master’s task to pick some available waybills for these spots and to put the cars in the right train. So waybills must also exist for these two spots, but without a marking for a specific weekday.

We use four types of waybills:
- waybill for inbound freight (one-cycle)
- combined empty car order / waybill (two-cycle)
- interchange waybill (two-cycle)
- run through waybill (two-cycle)

The first two are normal bills for freight to local customers. On interchange waybills only the receiving traffic location is mentioned, car type and content is not important. Run through waybills are for cars running from one staging yard to the other. The waybills are color-coded. Red denotes East, and yellow stands for West. Bigger traffic locations can get their own color code; for example, Appaloosa Junction has “green.”
9.3 **Car card boxes at stations**

Every station or site must have a box for car cards. The pocket should be 65 mm wide. Every customer should have its own compartment with an appropriate labelling. Stations should also have an “off spot” compartment for cars that could not be spotted and an “outbound” compartment for cars that were already switched from their loading/unloading spot.

10 **Recommended materials**

Here a short overview over the material recommendations in this standard. Walthers-Numbers are marked with this symbol: #.

- Asoa: Diabas ballast N, 1409 (200ml)
- Atlas: Telephone Poles, #150-2801
- Rix: N Scale Uncoupling Tool, #628-24
- Tamiya: XF-63 -- German Grey, XF-63
- Heki: summer grass, 3360
- Heki: wild grass, 3367
- Heki: winter soil, 3363
- Woodland Scenics: T43 - Fine Turf -- Yellow Grass, #785-43
- Woodland Scenics: T44 - Fine Turf -- Burnt Grass, #785-44
- Woodland Scenics: T45 - Fine Turf -- Green Grass, #785-45
- Woodland Scenics: T50 - Blended Turf -- earth, #785-50

11 **Links**

- ASOA: www.asoa.de
- Atlas: www.atlasrr.com
- FREMO: www.fremo.org
- NMRA: www.nmra.org
- Rix: www.rixproducts.com
- Tamiya: www.dickietamiya.com
- Walthers: www.walthers.com
- Woodland S.: www.woodlandscenics.com

12 **Contact**

Bernd Schneider
Beate-Paulus-Str. 2
70806 Kornwestheim
Germany

Tel: +49 (0) 151 10 72 31 89
homepage: www.america-n.de
email: kontakt2008@america-n.de